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1 Introduction

Large language models (LLMs) have demonstrated impressive capabilities across various generative tasks,
including following complex instructions and recalling factual knowledge [Agrawal et al., 2022, Saab et al.,
2024]. However, unexpected failures like the “reversal curse” are rooted in the nature of human knowledge
[Berglund et al., 2024]. In high-stakes domains such as healthcare, it is crucial to develop benchmarks and
tools that provide insight into the internal knowledge of these models, enabling safer and more reliable
deployment. This proposal outlines several critical areas of exploration, aiming not only to evaluate the
internal biomedical knowledge of language models but also to understand their knowledge boundaries, which
is essential for ensuring safe future applications.

2 Previous Works

Previous efforts in this field have largely focused on knowledge-recall-based benchmarks [Hendrycks et al.,
2021b,a, Jin et al., 2020, Liu et al., 2023]. However, recent studies, including some of our ongoing work, have
shown that these benchmarks only examine certain aspects of selected knowledge with a lack of depth [Sun
et al., 2024, Zhang et al., 2024]. Studies, including our own, have shown that the nature of pre-training data
significantly influences the behavior of downstream models, their belief, and decision bias generally and in the
clinical domain [Biderman et al., 2023, Chen et al., 2024a, Liu et al., 2024]. Therefore, I propose to develop
a knowledge Benchmark that considers the pre-training data before we move into medical decision-making.

On top of knowledge grounding, instruction tuning/reinforcement learning from human feedback has been
used to modify model behavior [Ouyang et al., 2022, Taori et al., 2023], but models’ internal knowledge can
often disagree with its outputs [Park et al., 2023, MacDiarmid et al., 2024]. For example, recent studies have
shown preliminary results supporting the notion that models tend to take in new information in-context if
the information does not significantly differ from existing knowledge [Mallen et al., 2023, Durmus et al., 2024,
Zou et al., 2023]. However, no work has been done to mechanistically understand the internal knowledge
representation relationship with new in-context information. By mechanistically understanding how LLMs
represent and incorporate new knowledge, we could develop strategies to correct or adjust models’ internal
knowledge or set boundaries in their decision-making processes as the clinical knowledge landscape shifts over
time. This would enhance the safety and reliability of LLMs in critical applications such as healthcare, where
decision accuracy is paramount. Additionally, this understanding would allow us to develop safeguards that
prevent LLMs from confidently making incorrect assertions, thereby improving user trust and mitigating
potential harm from model misuse.

3 Aims

To address these challenges, I present two major aims for the next two years during the fellowship duration:

3.1 AIM 1: Developing a Drug Safety Benchmark

LLMs are increasingly used in diagnosis, treatment recommendations, and patient education. However, ro-
bust understanding of medical concepts is vital for patient safety. Medication errors are a leading contributor
to medical safety events, accounting for 50% of avoidable harms [Hodkinson et al., 2020]. We aim to develop
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a new benchmark to evaluate LLMs’ understanding of medical knowledge, particularly for drugs and their
associated entities, focusing on factual accuracy, temporal knowledge adaptation, and demographic bias.

3.1.1 Stress Testing Models’ Understanding Among Drug Entities

The objective is to assess factual recall robustness, focusing on the models’ ability to comprehend less common
drug names while providing correct answers. Building on insights from [Sun et al., 2024, Zhang et al., 2024],
we will modify the MMLU benchmark to evaluate robustness with rarer drugs. We will create three versions
of MMLU: original MMLU, MMLU with all drug names converted to brand names, and MMLU with all
drug names converted to generic names. The model should maintain accuracy on multiple choice questions,
regardless of the name used.

We will also evaluate the models across real-world situations where they often fail, covering various drug
types and contexts. We will create new evaluation benchmarks for generative models across drug classes, indi-
cation types (e.g., cancer, mental health, addiction, cardiology), drug novelty, and frequency of use to identify
areas where models may fall short. Understanding these shortcomings is important because misidentification
or misunderstanding of drug-related information can lead to incorrect treatments and adverse outcomes.

3.1.2 Evaluating Models’ Ability to Update with New Medical Information

The objective is to test the timeliness and adaptability of models in integrating new medical knowledge,
focusing on temporal changes and incorporating new facts as evidence emerges. We will create a temporal
benchmark for medical knowledge based on the HemOnc dataset1, tagging information with dates such as
drug approval times and clinical trial phases. We will create scenarios based on different stages of clinical
trials: before a trial opens, during trial accrual, and after trial reports. We will evaluate the models’
responses to gauge adaptability and timeliness in updating knowledge, revealing their ability to update with
new information. This will lead to the development of adaptable benchmarks.

3.1.3 Assessing Models for Demographic Bias in Medical Contexts

The objective is to evaluate the models’ understanding of demographic biases in diagnosis and treatment,
focusing on their ability to provide equitable and unbiased answers. To achieve this, we will construct a
Demographic-Disease-Drug SRO dataset tailored for QA and interpretability-based tasks. In this dataset,
each entity will be associated with real-world data, such as prevalence or mortality rates across demographic
subgroups.

We will design examples reflecting different demographic factors that influence diagnosis and treatment.
For instance, an example might state: “The male/female, Black/White patient was diagnosed with cancer
of the breast/prostate/liver and was prescribed pembrolizumab/Keytruda,” or “The patient is undergoing
treatment with pembrolizumab/Keytruda for breast/prostate/lung cancer.” These comparisons are designed
to highlight potential biases or disparities in healthcare outcomes and treatments across different demographic
groups. By contrasting how the models handle cases involving various demographic factors, we can assess
whether the models exhibit bias in their diagnoses or treatment recommendations. For example, if a model
consistently favors one demographic group over another for a certain diagnosis or treatment, this could
indicate a bias that needs addressing.

The evaluation will utilize a range of metrics for bias assessment, including embedding-based metrics,
logits-based metrics, and generated text-based metrics, ensuring comprehensive coverage of subtle bias vari-
ations. The goal is to identify and mitigate demographic biases in the models’ responses, ensuring that they
provide fair and accurate healthcare information for all demographic groups.

3.2 AIM 2: Discovering and Addressing Model Knowledge Boundaries and
Internal Knowledge Representations

In this segment, we aim to leverage the benchmarks from Aim 1 to understand and address incorrect
or inconsistent knowledge in models. We aim to develop methods for mitigating risks related to faulty
knowledge representations, which is crucial for their reliability in sensitive domains like healthcare.

1hemonc.org: a hematology/oncology knowledge base and largest freely available wiki of chemotherapy drugs and regimens
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3.2.1 Persuasive Integrity Testing and Error Correction

We aim to evaluate the persuasive integrity of language models by presenting them with scenarios involving
various types of entities. The models will be provided with new information about a drug and tasked with
generating persuasive messages. We use persuasiveness not only due to the safety concerns of a misleadingly
persuasive LLM, but also because persuasiveness has been shown to be a better proxy measure of chat
model calibration. The evaluation will focus on the models’ ability to recognize synonymous entities and
avoid generating misleading messages. For example, in the case of frequent matching drug mentions2 such
as Tylenol and Acetaminophen, the desired response is an ethical one that acknowledges both names refer
to the same drug, irrespective of the new information. If a model fails this test, it will be corrected with the
statement, “Tylenol is the same as Acetaminophen,” and its adjusted response will be evaluated.

Through preliminary exploration, models often refuse to generate false information for common drugs,
but they struggle to accept new knowledge for rare drugs. We will also evaluate how persuasive these
outputs are to clinicians and patients, and whether this varies across models of different abilities. We aim
to determine if models that more resistant to persuasion offer better decision support and if models with
aligned internal representation produce more acceptable outputs.

Following the method of [Durmus et al., 2024, Chen et al., 2024b], we will assess the persuasiveness of the
arguments - and therefore the potential impact of model persuasiveness on downstream safety - by measuring
the shift in people’s stances between their initial view on the claim and their view after reading arguments
written by either humans, AI models or AI+human. Patient and physician participants will be shown a
claim, followed by an argument (human/AI-generated/AI+human), and asked to re-rate their stance.

3.2.2 Knowledge Boundary Analysis

To deepen our understanding of how language models handle knowledge boundaries and uncertainty based
on the Persuasive Integrity Testing scenarios, we will utilize linear probes and run In-Context Learning Tests
[Ahdritz et al., 2024]. By training linear probes, we aim to distinguish the epistemic uncertainty3 in the
models’ internal activations, focusing on scenarios involving frequent/known identical entities, rarer entities,
and unknown equivalence. This will help identify areas where the models exhibit knowledge gaps or false
beliefs and assess their effectiveness in predicting misleading or incorrect responses.

Running In Context Learning Tests will involve creating variations of the prompts with in-context infor-
mation to evaluate if the models adjust their responses based on new knowledge, thereby discerning their
epistemic or aleatoric uncertainty4. This will be particularly relevant for ambiguous equivalence entities with
unclear knowledge boundaries (rarer entities and unknown equivalence cases among the persuasive integrity
testing). These methods aim to enhance the models’ ability to recognize and adapt to context and provide
reliable decision support in sensitive domains like healthcare.

4 Timeline and Deliverables

Month 1-9: Develop benchmarks for factual recall, temporal knowledge, and demographic bias.
Month 9-24: Expand benchmarks for factual recall, temporal knowledge, and demographic bias.
Deliverable: Open benchmark and paper on GitHub & Huggingface
Month 6-12: Design and test a range of models using Persuasive Integrity Testing.
Deliverable: Preliminary results, code, human studies plan and open dataset.
Month 12-24: Further exploration of models’ internal representation analysis
Month 21-24: Human studies on Persuasive Integrity Testing
Deliverable: Publication of full human studies report and open-source method to asses models’ uncertainty.

2there will be three scenarios here: frequent/known identical drug entities, rarer drug entities, and unknown equivalence;
Preliminary results show that GPT-4 success rate drops as entities are newer and rarer

3represents ignorance or lack of knowledge. It can be reduced with more information or better models.
4Represents inherent randomness or variability in language. It can’t be reduced.
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